Definition |
\(x^n=\overset{n\text{-times}}{\overbrace{x\cdot x\cdot x\cdots x}}\) |
\(n\in\mathbb{N}\) |
Comparison |
\(x^m=x^n\iff m=n\) |
\(x\neq 0,\pm 1\); i.e., no special bases |
Same base Different exponents* |
\(x^m\cdot x^n=x^{m+n}\) |
Multiplication: add exponents |
\(x^m\div x^n=x^{m-n}\) |
Division: subtract exponents |
Same exponent Different bases* |
\(x^m\cdot y^m=(x\cdot y)^m\) |
|
\(x^m\div y^m=(x\div y)^m\) |
|
Double exponent* |
\((x^m)^n=x^{mn}\) |
Exponents are multiplied |
Special exponents† |
\(x^1=x\) |
An absent exponent means an exponent of \(1\) |
\(x^0=1\) |
\(x\neq 0\) |
Special bases† |
\(0^n=0\) |
\(n\gt 0\) |
\(1^n=1\) |
|
\((-1)^n=\begin{cases} \phantom{-}1;& n\text{ is even} \\ -1;& n\text{ is odd}\end{cases}\) |
|