Properties of limits

Name Rule Notes
Constant function \(\lim\limits_{x\to a}f(z)=f(z)\) \(f(z)\) does not depend on \(x\)
Constant multiple of a function \(\lim\limits_{x\to a}[kf(x)]=k\lim\limits_{x\to a}f(x)\) A multiplied constant can be taken out of the limit
Sum/difference of functions \(\lim\limits_{x\to a}[f(x)\pm g(x)]=\lim\limits_{x\to a}f(x)\pm\lim\limits_{x\to a}g(x)\) \(x\to a\) remains the same
Product of functions \(\lim\limits_{x\to a}[f(x)\cdot g(x)]=\lim\limits_{x\to a}f(x)\cdot\lim\limits_{x\to a}g(x)\) \(x\to a\) remains the same
Quotient of functions \(\lim\limits_{x\to a}\dfrac{f(x)}{g(x)}=\dfrac{\lim\limits_{x\to a}f(x)}{\lim\limits_{x\to a}g(x)}\) \(x\to a\) remains the same
Provided \(\lim\limits_{x\to a}g(x)\neq 0\)
Power of a function \(\lim\limits_{x\to a}\left[f(x)\right]^n=\left[\lim\limits_{x\to a}f(x)\right]^n\) \(x\to a\) remains the same
Provided \(\lim\limits_{x\to a}f(x)\) exists