Rules of differentiation

Name Rule Notes
Constant function \(\dfrac{d}{dx} k=0\) \(k\in\mathbb{R};k\) is constant
Power rule \(\dfrac{d}{dx}x^n=nx^{n-1}\) \(n\in\mathbb{R};n\neq 0\)
Exponential functions \(\dfrac{d}{dx}b^x=b^x\ln b\) \(b\in\mathbb{R};b\gt 0;b\neq 1\)
\(\dfrac{d}{dx}e^x=e^x\)
Logarithmic functions \(\dfrac{d}{dx}\log_b x=\dfrac{1}{x\ln b}\) \(b\in\mathbb{R};b\gt 0;b\neq 1;x\gt 0\)
\(\dfrac{d}{dx}\ln x=\dfrac{1}{x}\) \(x\gt 0\)
Trigonometric functions \(\dfrac{d}{dx}\sin x=\phantom{-}\cos x\)
\(\dfrac{d}{dx}\cos x=-\sin x\)
\(\dfrac{d}{dx}\tan x=\phantom{-}\sec^2 x\) \(x\neq\frac{\pi}{2}+\pi n;n\in\mathbb{Z}\)
\(\dfrac{d}{dx}\cot x=-\csc^2 x\) \(x\neq \pi n;n\in\mathbb{Z}\)
\(\dfrac{d}{dx}\sec x=\phantom{-}\sec x\tan x\) \(x\neq\frac{\pi}{2}+\pi n;n\in\mathbb{Z}\)
\(\dfrac{d}{dx}\csc x=-\csc x\cot x\) \(x\neq \pi n;n\in\mathbb{Z}\)